Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7412, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052790

RESUMO

Although massive biomass fluctuations of coastal-pelagic fishes are an iconic example of the impacts of climate variability on marine ecosystems, the mechanisms governing these dynamics are often elusive. We construct a 45-year record of nitrogen stable isotopes measured in larvae of Northern Anchovy (Engraulis mordax) in the California Current Ecosystem to assess patterns in food chain length. Larval trophic efficiency associated with a shortened food chain increased larval survival and produced boom periods of high adult biomass. In contrast, when larval food chain length increased, and energy transfer efficiency decreased, the population crashed. We propose the Trophic Efficiency in Early Life (TEEL) hypothesis, which states that larval fishes must consume prey that confer sufficient energy for survival, to help explain natural boom-bust dynamics of coastal pelagic fishes. Our findings illustrate a potential for trophic indicators to generally inform larval survival and adult population dynamics of coastal-pelagic fishes.


Assuntos
Ecossistema , Peixes , Animais , Larva , Cadeia Alimentar , Dieta , Isótopos de Nitrogênio/análise
2.
J Plankton Res ; 44(5): 763-781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045950

RESUMO

We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.

3.
Glob Chang Biol ; 28(5): 1766-1785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951510

RESUMO

The 2014-2016 Northeast Pacific marine heatwave (MHW) induced the warmest 3-year period on record in the California Current Ecosystem. We tested whether larval fish assemblage structure, phenology, and diversity dynamics were comparable to past warming events from 1951 to 2013. First, we hypothesized, based on past observations of biological effect of warming, that mesopelagic species with southern distributions relative to southern California and Pacific sardine Sardinops sagax (a coastal pelagic species) would increase during the MHW while northern mesopelagics and northern anchovy Engraulis mordax (coastal pelagic) abundances would decline. Similar to past warming, southern mesopelagics increased and northern mesopelagics decreased. Unexpectedly, however, a common southern mesopelagic, Mexican lampfish Triphoturus mexicanus, was approximately three times more abundant than the previous annual high. Furthermore, whereas sardine abundance did not increase, larval anchovy abundance rose to near-record highs in summer 2016. Second, we hypothesized that fishes would spawn earlier during the MHW. Fishes did not spawn in an earlier season within a year, but five of six southern mesopelagic taxa spawned earlier than typical within winter and spring. Third, we predicted that species richness would increase moderately due to an influx of southern and exodus of northern species. Richness, however, was very high in all seasons and the highest ever during the summer as multiple species with primarily southern distributions were recorded spawning for the first time in southern California. The richness of northern species was also unexpectedly high during the MHW. Northern species likely persisted in the study area because in addition to the warm water, pockets of cold water were consistently present. If, as predicted, conditions similar to the MHW become more common as oceans warm, this unique and largely unexpected combination of fishes may reflect future biological conditions.


Assuntos
Ecossistema , Peixes , Animais , California , Peixes/fisiologia , Larva , Oceanos e Mares , Estações do Ano
4.
Proc Natl Acad Sci U S A ; 112(42): 12997-3002, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26417090

RESUMO

Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010 ‒ 2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼ 4.5 individuals × 1,000 m(-2) within a depth range of 1,100 ‒ 1,500 m (overall observed depth range 841-2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids--echinoderms and mollusks--were abundant on the upper slope (550-800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore.


Assuntos
Crustáceos/fisiologia , Animais , Regiões Antárticas , Mudança Climática , Feminino , Masculino , Dinâmica Populacional , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...